Polyfunctionalized Pyrrolidines by Stereoselective 1,3-Dipolar Cycloaddition of Azomethine Ylides to Chiral Enones

Guido Galley, Jürgen Liebscher, and Michael Pätzel*

Institut für Chemie, Humboldt-Universität Berlin, Hessische Strasse 1-2, D-10115 Berlin, Germany

Received March 7, 1995[®]

The cycloaddition reactions of chiral α,β -unsaturated ketones substituted by alkoxy or amino groups in the γ -position to azomethine ylides (obtained from glycine imines) were investigated in the presence of a base, LiBr and AgOAc. High regioselectivities were observed in most cases, resulting in the formation of a single diastereomer, particularly if a DBU/AgOAc catalyst system was employed. The influence of reaction conditions and olefin structure on the stereoselectivity of the reaction was investigated, and models rationalizing stereocontrol are proposed. In addition, an interesting deconjugation reaction of acetals derived from γ,δ -dihydroxy α,β -unsaturated enones or esters is described.

Introduction

The dipolar cycloaddition of an azomethine ylide to an alkene is a very useful synthetic method for the synthesis of pyrrolidines. Two carbon-carbon bonds are formed in a single operation, usually with a high degree of regioselectivity, while up to four new stereocenters are created, often in a highly stereoselective manner.^{1,2} Therefore, this method has also been used as an effective tool for the assembly of biologically relevant highly functionalized proline derivatives.

It has been shown by the groups of Grigg³ and Kanemasa⁴ that azomethine ylides can be conveniently prepared from acceptor-substituted imines by deprotonation in the presence of a metal salt and a tertiary amine. The resulting stabilized metalloazomethine vlides occasionally provided high levels of stereocontrol in asymmetric syntheses.^{4,5} For example, Cinquini et al.⁶ have recently reported a cycloaddition of azomethine ylides derived from glycine imines to enantiomerically pure $E \cdot \alpha, \beta$ -unsaturated esters with an alkoxy substituent in the γ -position. High regioselectivity and diastereomeric ratios ranging from 75:25 to 95:5 were observed if a combination of DBU/LiBr was used for the ylide generation. To the best of our knowledge, only esters were employed as dipolarophiles based on γ -chiral α . β unsaturated carbonyl compounds in dipolar cycloadditions with azomethine ylides.

* Abstract published in Advance ACS Abstracts, July 15, 1995.

In a preliminary communication, we reported on the application of this reaction to chiral α,β -unsaturated ketones 1 bearing alkoxy or amino substituents in the γ -position.⁷ In the present paper, we report on experimental details and spectroscopic data as well as on investigations of the influence of catalyst, temperature, and chiral controller on the stereochemical outcome of these reactions. The extension of the substituent patterns of the imine component **2** and interesting deconjugation reactions of enones **1** with an acetal moiety are also included. Models of transition states are shown to rationalize the observed stereochemistry.

Results and Discussion

The chiral α,β -unsaturated enones $1^{7,8}$ were reacted with azomethine ylides under various conditions (Scheme 1). The metalloazomethine ylides (see Figure 3) were generated in THF from the corresponding azomethines 2 with DBU in the presence of a metal salt (LiBr or AgOAc). Whereas LiBr gave diastereomeric mixtures in most cases even at low temperatures, the reactions with AgOAc (0.15 equiv, 1:1 ratio of imine 2 and dipolarophile 1) proceeded with remarkable regio- and diastereoselectivity (see Table 1). Only one detectable stereoisomer (according to ¹H and ¹³C NMR spectroscopy) was obtained at room temperature in most cases.

⁽¹⁾ Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1990. For some recent applications on azomethine ylides, see: (a) Waldmann, H.; Bläser, E.; Jansen, M.; Letschert, H.-P. Angew. Chem., Int. Ed. Engl. 1994, 104, 683. (b) Williams, R. M.; Zhai, W.; Aldous, D. J.; Aldous, S. C. J. Org. Chem. 1992, 57, 6527 and references cited therein.

⁽²⁾ Lown, W. J. in 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984.

 ^{(3) (}a) Grigg, R.; Sridharan, V. Adv. Cycloaddit. 1993, 3, 161. (b)
 Grigg, R.; Montgomery, J.; Somasunderam, A. Tetrahedron 1992, 48, 10431 and preceding papers.

¹⁰⁴³¹ and preceding papers.
(4) (a) Kanemasa, S.; Tsuge, O. Adv. Cycloaddit. 1993, 3, 99. (b) Kanemasa, S.; Hayashi, T.; Tanaka, J.; Yamamoto, H.; Sakurai, T. J. Org. Chem. 1991, 56, 4473 and preceding papers.

<sup>Kallendas, S., Hayashi, T., Tallara, G., Tallandot, H., Okurat, T. S. Org. Chem. 1991, 56, 4473 and preceding papers.
(5) (a) Kanemasa, S.; Yamamoto, H.; Wada, E.; Sakurai, T.; Urushi-do, K. Bull. Chem. Soc. Jpn. 1990, 63, 2857. (b) Barr, D. A.; Dorrity, M. J.; Grigg, R.; Malone, J. F.; Montgomery, J.; Rajviroongit, S.; Stevenson, P. Tetrahedron Lett. 1990, 31, 6569. (c) Allway, P.; Grigg, R. Tetrahedron Lett. 1991, 32, 5817.</sup>

⁽⁶⁾ Annunziata, R.; Cinquini, M.; Cozzi, F.; Raimondi, L.; Pilati, T. Tetrahedron: Asymmetry **1991**, 2, 1329.

⁽⁷⁾ Pätzel, M.; Galley, G.; Jones, P. G.; Chrapkowsky A. Tetrahedron Lett. 1993, 34, 5707.

⁽⁸⁾ Galley, G.; Pätzel, M.; Jones, P. G. Tetrahedron 1995, 51, 1631.

Table 1. Synthesis of Pyrrolidines 3 from Enones 1 and Glycine Imines 2

			•	•		•			
entry	enone	\mathbb{R}^1	\mathbb{R}^2	product	metal salt	temp	time (h)	yield (%)	3:3′
1	1a	Ph	OEt	3a	LiBr	rt	2	63	70:30
2	1a	Ph	OEt	3a	AgOAc	rt	2	90	95:5
3	1a	Ph	OEt	3a	LiBr	−78 °C	4	53	85:15
4	1a	Ph	OEt	3a	AgOAc	−78 °C	4	91	>95:5
5	1a	3-Py	OEt	3b	LiBr	rt	2	60	75:25
6	1a	3-Py	\mathbf{OEt}	3b	AgOAc	rt	2	91	>95:5
7	1a	<i>p</i> -MeOPh	OEt	3c	AgOAc	rt	2	82	90:10
8	la	Ph	O-i-Bu	3d	AgOAc	rt	2	88	87:13
9	1a	Ph	O-i-Bu	3d	AgOAc	−78 °C	4	90	>95:5
10	1a	Ph	$\rm NH_2$	3e	AgOAc	rt	3	73	72:28
11	1a	Ph	$\rm NH_2$	3e	AgOAc	−78 °C	8	72	81:19
12	1b	Ph	OEt	3f	AgOAc	rt	2	96	92:8
13	1b	Ph	OEt	3f	AgOAc	−78 °C	4	95	>95:5
14	1b	3-Py	OEt	3g	AgOAc	rt	2	98	95:5
15	1c	Ph	OEt	3ĥ	AgOAc	rt	2	78	>95:5
16	1 d	Ph	OEt	3i	LiBr	rt	2	65	>95:5
17	1d	Ph	OEt	3i	AgOAc	rt	2	88	>95:5
18	1d	3-Py	OEt	3j	AgOAc	\mathbf{rt}	2	76	>95:5
19	1e	Ph	OEt	3k	AgOAc	rt	2	94	>95:5
20	1e	3-Py	OEt	31	AgOAc	rt	2	98	>95:5
21	1e	C_6H_{11}	OEt	3m	AgOAc	rt	6	96	85:15

Table 2. Pyrrolidines 6 from α,β -Unsaturated Ester 4

entry	metal salt	temp	time (h)	yield (%)	6:6′
1	LiBr	rt	2	57	75:25
2	AgOAc	rt	2	77	85:15
3	LiBr	−78 °C	4	55	90:10
4	AgOAc	−78 °C	4	87	>95:5

Moreover, the AgOAc/DBU system also gave higher chemical yields than LiBr/DBU. In the latter case, comparable chemical yields could only be attained by using an excess of the imine component, necessitating additional chromatographic separation. Considerable improvement of the diastereoselectivity and the chemical yield could also be attained in the reported ester series⁶ (see Table 2) if the AgOAc/DBU method was applied to the cycloaddition of azomethine ylides derived from **5** and the chiral α,β -unsaturated ester **4**. As a result, it became possible to perform this reaction in excellent yield to afford a single diastereomer **6** (Scheme 2).

In further experiments, we varied the substituents in the imine component 2. When carboxylic amides of amino acids ($R^2 = NH_2$) were used in metallodipole formation, the reaction was found to be slower than it was in the glycine ester series ($R^2 = OEt$). Only modest diastereoselectivity (dr = 81:19) was found even at -78 °C (see Table 1, entries 10 and 11). A plausible explanation is the decreased CH acidity of the amide 2 ($R^2 =$ NH₂) as compared with that of the ester 2 ($R^2 = OEt$) which may result in a slower deprotonation process.

It is known that imines of aliphatic aldehydes are poor azomethine ylide precursors in the presence of lithium bromide.³ Remarkably, the AgOAc/DBU system also allowed us to extend the cycloaddition reaction of 1 to

aliphatic imines 2 (\mathbb{R}^1 = cyclohexyl; see Table 1, entry 21). The rate of the reaction was slower, but no products of a competitive Michael reaction were observed. This corresponds with the results observed in the cycloaddition of azomethine ylides to methyl acrylate.^{3b}

The influence of the chiral controller \mathbb{R}^* on the diastereoselectivity was investigated by using different enone compounds 1. The highest stereoselectivities could be achieved with the bulky dibenzylamino substituent in the γ -position (1d and 1e) or by using the enone 1c with the γ -benzyloxy group and the unprotected terminal hydroxyl function (compare entries 2, 12, 15, 17, and 19 in Table 1).

In the course of our investigations of cycloaddition reactions of enones 1, we sometimes observed unknown products during longer reaction times. These products were formed in the absence of both the azomethine 2 and the metal salt. Thus, stirring of the enone 1a in the presence of DBU at room temperature for 4 days gave a complete conversion to two new products (detected by TLC). Further experiments revealed that all enones of acetal structure **1a**,**b** as well as the corresponding ester 4 undergo this reaction in the presence of a base such as DBU.9 The resulting stereoisomers could be separated by column chromatography and analyzed as E- and Z-enol acetals 8 (see Scheme 3). Acidic removal of the acetal moiety afforded the known¹⁰ 5-hydroxy-1,4-dicarbonyl compounds 9, confirming the correctness of the structure 8 (Table 3). As a mechanism for this unusual

⁽⁹⁾ Galley, G. Diplom Thesis, Humboldt University Berlin, Berlin, Germany, 1993.

^{(10) (}a) Stetter, H.; Mohrmann, K.-H.; Schlenker, W. *Chem. Ber.* **1981**, *114*, 581. (b) Lüond, R.; Walker, J.; Neier, R. J. Org. Chem. **1992**, 57, 5005.

Table 3. Products 8 and 9 Derived from DBU-Catalyzed Isomerization

deconjugation process, a base-catalyzed γ -deprotonationprotonation sequence via a dienolate anion¹¹ is postulated.¹²

In contrast, if the enone 1c was treated with DBU, the dienone 10 and benzyl alcohol were isolated from the reaction mixture. The formation of 10 can be rationalized

by an elimination of water via an E1cB process.¹³

The structural assignments for the pyrrolidine compounds 3 and 3' were based on X-ray analyses7 of the major isomer 3a and 3i. All compounds were characterized by ¹H and ¹³C NMR spectroscopy. Proton-decoupling and ¹H-¹³C correlation experiments helped to assign the signals, and NOE difference measurements allowed for the evaluation of the substitution pattern of the pyrrolidine ring. The examination of the NMR spectra (¹³C and ¹H shifts, H–H coupling constants) supported an identical relative stereochemistry of the ring carbon atoms of all major isomers 3 (see the Experimental Section). Hence, in all compounds 3, the relative orientation of the substituents at C2/C3 and C3/C4 is anti and at C4/C5 is syn. This stereochemical outcome is caused by the regiospecific endo cycloaddition of the W-shaped dipole¹⁴ to the *E*-configured dipolarophile already observed in the ester series.⁶

The absolute configuration of products 3 derived from amino enones 1d and 1e can be assumed to be identical to that of 3i (for X-ray analysis, see ref 7). X-ray analysis of compound 3a revealed an *anti* orientation of the substituents at C3 and at the stereocenter C1' of the chiral controller R*. In the alkoxy-substituted series of products derived from 1a-c, the absolute configuration was determined by removal of the O protective groups of one compound from each series (Scheme 4). Acidic acetal cleavage of 3a and 3f as well as debenzylation of **3h** furnished the identical diol 11 characterized on the basis of NMR spectroscopic and optical rotation measure-

Figure 1. Model of the transition state for the formation of pyrrolidine **3a**.

ments. If the acetal cleavage is conducted with p-toluenesulfonic acid in methanol, an interesting byproduct can be isolated. On the basis of NMR spectroscopic data (e.g. acetal C at 99.0 ppm), we concluded that the byproduct was the inner acetal 12 (see Scheme 5). An alternative five-membered acetal is less probable due to higher ring strain of the two *trans*-fused five-membered rings. The noteworthy fact that only one diastereomer of 12 appeared was certainly caused by the fixed configurations of the reacting functional groups.

On the basis of the structural assignments of 3, the preferred stereochemical mode of attack at the diastereotopic faces of the enone system could be determined. As mentioned above, anti selectivity was observed in the alkoxy series. This result is in agreement with Cinquini's findings in the ester series and comparable with nitrile oxide^{15a} and nitrone^{15b} cycloadditions to related olefins bearing an oxygen-substituted allylic stereocenter. It can be explained by Houk's inside alkoxy effect.^{16,17} As illustrated in Figure 1, the transition state for the formation of the major diastereomer **3a** involves attack of the ylide with the olefin orientated away from the most bulky alkyl moiety. The alkoxy substituent occupies the stereoelectronically favored inside position and the small H atom the crowded outside region. If the olefin were attacked from the other side, only the less stable transition structures would be possible because of unfavorable steric interactions.

Unlike the analysis of product 3a, X-ray analysis of compound 3i revealed syn orientation of the substituents at C3 and C1'. For explaining this stereochemical outcome of the cycloaddition of azomethine ylides to the amino-substituted enones 1d and 1e, Houk's model is

⁽¹¹⁾ Patai, S., Rapoport, Z., Eds. The Chemistry of Enones; Wiley Interscience: Chichester, U.K., 1989.

⁽¹²⁾ For a related deconjugation process of unsaturated esters in Grignard reactions, see: Ibuka, T.; Taga, T.; Habashita, H.; Nakai, K.; Tamamura, H.; Fujii, N. J. Org. Chem. **1993**, 58, 1207. (13) As already observed at $\gamma_i \delta_i$ -diacetoxy-substituted $\alpha_i \beta$ -unsaturated clabudos desired desired for $\gamma_i \delta_i$ diacetoxy-substituted $\alpha_i \beta$ -unsaturated clabudos desired for $\gamma_i \delta_i$ diacetoxy-substituted $\alpha_i \beta$ -unsaturated set of the set of the

⁽¹³⁾ As already observed at γ , δ -diacetoxy-substituted α , β -unsaturated aldehydes derived from sugars: Roman, E.; Serrano, J. A.; Cuellar, M. E., Marfil, A.; Galbis, J. A. J. Carbohydr. Chem. **1992**, 17, 1.

^{(14) (}a) Tsuge, O.; Kanemasa, S. Adv. Heterocycl. Chem. **1989**, 45, 231. (b) Tsuge, O.; Kanemasa, S.; Yoshioka, M. J. Org. Chem. **1988**, 53, 1384.

^{(15) (}a) Jäger, V.; Müller, I.; Schohe, R.; Frey, M.; Ehrler, R.; Häfele,
B.; Schröter, D. Lect. Heterocycl. Chem. 1985, 8, 79. (b) Annunziata,
R.; Benaglia, M.; Cinquini, M.; Raimondi, L. Tetrahedron 1993, 38, 8629.

^{(16) (}a) Houk, K. N.; Wu, Y.-D.; Duh, H.-Y.; Moses, S. R. J. Am. Chem. Soc. **1986**, 108, 2754. (b) Houk, K. N.; Moses, S. R.; Wu, Y.-D.; Rondan, N. G.; Jäger, V.; Schohe, R.; Fronczek, F. J. Am. Chem. Soc. **1984**, 106, 3880.

⁽¹⁷⁾ Modified models for similar reactions were proposed by Mulzer and Reetz: (a) Mulzer, J.; Kappert, M.; Huttner, G.; Jibril, I. *Tetrahedron Lett.* **1985**, *26*, 1631. (b) Reetz, M. T.; Kayser, F.; Harms, K. *Tetrahedron Lett.* **1992**, *33*, 3453.

⁽¹⁸⁾ Röhrig, D. Dissertation, University Marburg, Marburg, Germany. 1991.

Figure 2. Model of the transition state for the formation of pyrrolidine 3i.

Figure 3. Formation of metallodipoles from an imine and a metal salt.

again useful. The bulky dibenzylamino group is situated in an *anti* position with respect to the incoming dipole, while the alkyl moiety (CH₃) occupies the inside position and again the small H atom adopts the crowded outside region (Figure 2). The same diastereoselection is observed in Diels-Alder reactions of dibenzylamino substituted enones¹⁸ and may also be explained by using this model.

The application of this model to the reactions of γ -amino enones **1d** and **1e** reveals that the extent of diastereoselectivity depends on the relative size of the allylic substituents which therefore prefer specific positions. Hence, the higher diastereomeric ratio observed with enone **1d**, as compared with that of **1e**, can be explained by the higher difference in size between the dibenzylamino group on one side and the methyl group or the benzyl substituent on the other side.

As outlined above, the nature of the metal salt, i.e. the effectiveness of the complexation of both reactants, is of great importance to both the yield and the extent of diastereoselectivity. Although a comparative investigation of the suitability of silver acetate and lithium bromide in the presence of triethylamine for the generation of metallodipoles is known,¹⁹ the reason for better catalytic activity and higher chemical yields achieved with silver acetate still remains unclear. It is possible that the nature of chelation with the azomethine ylide exerts an influence on selectivity. If mesomeric structures of the metallodipole are considered, the lithium as a hard cation should mainly interact with the carbonyl oxygen atom, whereas the soft silver cation would prefer interaction with the nitrogen (see Figure 3). In the latter case, the dipole character of the N-metallated azomethine ylide is more pronounced, thus certainly favoring the cycloaddition reaction.

It is known for the ester series that Z-configured alkenes do not give clean reactions with metallodipoles generated from imines in the presence of LiBr and DBU.⁶ Accordingly, our attempts with Z-enones in the presence of AgOAc and DBU were unsuccessful and yielded only complex mixtures. One explanation for this observation might be found in the concept of 1,3-allylic strain.²⁰ The preferred transition state of the *E*-isomer (see Figure 1) is not favorable for the Z-isomer because of repulsive forces between the allylic substituents and the Z-orientated acetyl group. Hence, other transition states are preferred and lead to low stereoselectivity.

Experimental Section

All solvents and reagents were purchased from commercial sources and used as received, unless otherwise stated. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl prior to use. The reactions and the purity of compounds were monitored by TLC performed on precoated silica gel plates with a fluorescence indicator (Merck 60 F₂₅₄). Column chromatography was carried out on Merck Kieselgel 60 (0.040–0.063). NMR samples were recorded in CDCl₃. The chemical shifts are given in δ values relative to residual proton or carbon resonances of CDCl₃ (7.26 or 77.0, respectively). Optical rotations were measured using a 2 mL cell. [α] values are given in 10^{-1} deg cm² g⁻¹.

Synthesis of Enones 1. The enones were prepared by Wittig reaction according to literature procedures $(1a,^{21} lb,c,^{8} and 1d,e^{18})$ from the corresponding chiral aldehydes²² and acetylmethylene triphenylphosphorane. The enoate 4 was purchased from Merck Co.

Preparation of Imines (2 or 5). Imines from aromatic^{14b} and aliphatic^{3b} aldehydes and glycine esters were prepared according to literature procedures.

Benzylidene Glycine Amide. A mixture of glycine amide (2.2 g, 20 mmol), benzaldehyde (2.1 g, 20 mmol), and triethylamine (2.0 g, 20 mmol) in 10 mL of benzene/20 mL of methanol was heated to reflux for 8 h, concentrated, and washed with 5 mL of ether (to remove unreacted benzaldehyde). The remaining solid was dissolved in CH₂Cl₂, washed with water, dried with MgSO₄, and evaporated until crystalization began. The white solid was collected (2.0 g, 62%): mp 140 °C; ¹H NMR δ 8.30 (1H, t, J = 1.3 Hz), 7.70–7.85 (2H, m), 7.40–7.25 (3H, m), 6.90 and 6.00 (1H, b), 4.26 (2H, d, J = 1.3 Hz).

Synthesis of Pyrrolidines (3 or 6). Imine 2 (0.5 mmol) was dissolved in dry THF (4 mL), and silver acetate (12 mg, 0.075 mmol) or LiBr (65 mg, 0.75 mmol) was added. The mixture was stirred for 10 min at the given temperature (see Table 1). Enone 1 or ester 4 (0.5 mmol) and DBU (91 mg, 0.6 mmol) were added, and the mixture was stirred until no starting material could be detected by TLC (2-8 h, see Table 1). Ether (15 mL) was added, the solution was extracted with saturated NH4Cl solution, and the aqueous solution was reextracted with ether. The combined organic layers were washed with water (2 × 10 mL), dried (MgSO₄), and concentrated under reduced pressure.

Ethyl (2*R*,3*R*,4*R*,5*S*)-4-acetyl-3-[(4*S*)-2,2-dimethyl-1,3dioxolan-4-yl]-5-phenylpyrrolidine-2-carboxylate (3a): ¹³C NMR δ 209.3, 172.1, 137.6, 128.4, 127.6, 126.2, 108.9, 76.2, 68.0, 65.5, 62.7, 61.2, 58.3, 50.3, 31.2, 26.3, 25.0, 14.0; ¹H NMR δ 7.20-7.35 (5H, m), 4.50 (1H, d, *J* = 7.6 Hz), 4.24 (2H, q, *J* = 7.1 Hz), 4.22-4.30 (1H, m), 4.04 (1H, *J* = 6.5, 8.5 Hz), 3.66 (1H, d, *J* = 6.7 Hz), 3.57 (1H, *J* = 6.5, 8.5 Hz), 3.49 (1H, dd, *J* = 3.5, 7.6 Hz), 2.76 (1H, dt, *J* = 3.5, 6.5 Hz), 1.47 (3H, s), 1.39, 1.31 (3H, s), 1.27 (3H, t, *J* = 7.1 Hz); [α]²⁰₅₄₆ -23.0 (*c* = 1.0, CH₂Cl₂). Anal. Calcd for C₂₀H₂₇NO₅ (361.43): C, 66.46; H, 7.53; N, 3.88. Found: C, 66.36; H, 7.38; N, 3.95.

Ethyl (2S,3S,4S,5R)-4-acetyl-3-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-5-phenylpyrrolidine-2-carboxylate (3a', minor): 13 C NMR δ 208.8, 173.0, 138.0, 128.9, 127.8, 126.7, 109.2, 76.9, 67.0, 65.7, 62.8, 61.2, 60.3, 48.6, 31.1, 26.4, 25.0, 14.1.

Ethyl (2R,3R,4R,5S)-4-acetyl-3-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-5-(pyridin-3-yl)pyrrolidine-2-carboxylate (3b): 13 C NMR δ 208.9, 172.0, 149.2, 148.7, 134.2, 133.8,

⁽¹⁹⁾ Barr, D.; Grigg, R.; Gunaratne, H. Q.; Kemp, J.; McMeekin, P.; Sridharan, V. Tetrahedron **1988**, 44, 557.

⁽²⁰⁾ Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1992, 104, 1124.

⁽²¹⁾ Ronnenberg, H.; Borch, G.; Buchecker, R.; Arpin, N.; Liaaen-Jensen, S. *Phytochemistry* **1982**, *21*, 2087.

^{(22) (}a) Dumont, R.; Pfander, H. Helv. Chim. Acta **1983**, 66, 814. Häfele, B.; Jäger, V. Liebigs Ann. Chem. **1987**, 85. (b) Schrötter, E.; Luong, T. T.; Schick, H. J. Prakt. Chem. **1990**, 332, 191. (c) Jäger, V.; Wehner, V. Angew. Chem., Int. Ed. Engl. **1989**, 28, 469. (d) Reetz, M. T.; Drewes, M. W.; Schmitz, A. Angew. Chem., Int. Ed. Engl. **1987**, 26, 1141.

123.4, 109.1, 76.1, 68.0, 62.8, 62.7, 61.4, 57.8, 50.4, 31.6, 26.4, 25.0, 14.1; ¹H NMR δ 8.50 (1H, s), 8.45 (1H, d, J = 4.6 Hz), 7.57 (1H, d, J = 7.9 Hz), 7.20 (1H, dd, J = 8.1, 4.7 Hz), 4.52 (1H, d, J = 7.7 Hz), 4.23 (2H, q, J = 7.1 Hz), 4.20–4.30 (1H, m), 4.04 (1H, J = 6.6, 8.5 Hz), 3.69 (1H, d, J = 7.0 Hz), 3.57 (1H, J = 6.6, 8.5 Hz), 3.55 (1H, dd, J = 3.1, 7.7 Hz), 2.77 (1H, dt, J = 3.1, 7.0 Hz), 1.61 (3H, s), 1.39 (3H, s), 1.31 (3H, s), 1.27 (3H, t, J = 7.2 Hz); $[\alpha]^{20}_{546} - 28.0$ (c = 1.0, CH₂Cl₂). Anal. Calcd for C₁₉H₂₆N₂O₅ (362.42): C, 62.96; H, 7.23; N, 7.73. Found: C, 62.66; H, 7.08; N, 7.79.

Ethyl (2*R*,3*R*,4*R*,5*S*)-4-acetyl-3-[(4*S*)-2,2-dimethyl-1,3-dioxolan-4-yl]-5-(*p*-methoxyphenyl)pyrrolidine-2-carboxylate (3c): 13 C NMR δ 209.5, 172.2, 158.9, 129.5, 127.7, 113.7, 108.9, 76.1, 67.9, 64.9, 62.5, 61.1, 54.9, 58.2, 50.1, 31.3, 26.3, 24.9 13.9; 11 H NMR δ 7.18–7.38 (4H, m), 4.54 (1H, d, *J* = 7.7 Hz), 4.30 (2H, q, *J* = 7.1 Hz), 4.28–4.35 (1H, m), 4.11 (1H, *J* = 6.4, 8.5 Hz), 3.79 (3H, s), 3.71 (1H, d, *J* = 7.0 Hz), 3.63 (1H, *J* = 6.4, 8.5 Hz), 3.52 (1H, dd, *J* = 3.6, 7.7 Hz), 2.83 (1H, dt, *J* = 3.7, 6.2 Hz), 1.58 (3H, s), 1.43 (3H, s), 1.34 (3H, s), 1.25 (3H, t, *J* = 7.1 Hz), [α]²⁰₅₄₆ –21.0 (*c* = 1.0, CH₂Cl₂). Anal. Calcd for C₂₁H₂₉NO₆ (391.46): C, 64.43; H, 7.47; N, 3.58. Found: C, 64.26; H, 7.18; N, 3.85.

Isobutyl (2*R*,3*R*,4*R*,5*S*)-4-acetyl-3-[(4*S*)-2,2-dimethyl-1,3-dioxolan-4-yl]-5-phenylpyrrolidine-2-carboxylate (3d): ¹³C NMR δ 209.8, 172.6, 138.0, 128.9, 128.1, 127.0, 109.5, 76.6, 71.7, 68.4, 66.0, 63.2, 58.8, 50.8, 31.7, 28.1, 26.8, 25.4, 19.4; ¹H NMR δ 7.16–7.28 (5H, m), 4.50 (1H, d, *J* = 7.6 Hz), 4.20– 4.30 (1H, m), 4.03 (1H, *J* = 6.5, 8.4 Hz), 3.96 (2H, d, *J* = 6.6 Hz), 3.67 (1H, d, *J* = 6.6 Hz), 3.58 (1H, *J* = 6.5, 8.4 Hz), 3.48 (1H, dd, *J* = 3.3, 7.6 Hz), 2.77 (1H, dt, *J* = 3.4, 6.3 Hz), 1.78 (3H, s), 1.38 (3H, s), 1.30 (3H, s), 1.89–2.02 (1H, m), 0.91 (6H, d, *J* = 6.7 Hz); [α]²⁰₅₄₆ – 29.5 (*c* = 1.0, CH₂Cl₂). Anal. Calcd for C₂₂H₃₁NO₅ (389.49): C, 67.84; H, 8.02; N, 3.59. Found: C, 67.48; H, 7.84; N, 3.43.

(2R,3R,4R,5S)-4-Acetyl-3-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-5-phenylpyrrolidine-2-carboxylic acid amide (3e): ¹³C NMR δ 208.9, 176.6, 138.3, 128.5, 128.0, 126.9, 109.0, 76.7, 67.8, 64.4, 62.5, 57.1, 49.1, 31.4, 26.4, 24.9; ¹H NMR δ 7.18– 7.45 (5H, m), 4.59 (1H, d, J = 7.7 Hz), 4.30 (1H, q, J = 6.2 Hz), 4.03, 3.61 (1H, J = 6.6, 8.5 Hz), 3.51 (1H, d, J = 6.4 Hz), 3.39 (1H, dd, J = 2.7, 7.7 Hz), 2.69 (1H, dt, J = 2.8, 6.1 Hz), 2.40 (2H, b, J = 6.7 Hz), 1.38 (3H, s), 1.37 (3H, s), 1.29 (3H, s); [α]²⁰₅₄₆ -20.0 (c = 1.0, CH₂Cl₂). Anal. Calcd for C₁₈H₂₄N₂O₄ (332.40): C, 65.04; H, 7.28; N, 8.43. Found: C, 64.88; H, 7.44; N, 8.52.

Ethyl (2*R*,3*R*,4*R*,5*S*)-4-acetyl-3-[(1*S*)-1,2-*O*-cyclohexylideneethyl]-5-phenylpyrrolidine-2-carboxylate (3f): ¹³C NMR δ 209.5, 172.1, 137.5, 128.5, 126.6, 127.7, 109.5, 76.0, 67.7, 65.6, 62.8, 61.2, 58.5, 50.5, 36.1, 34.5, 31.4, 25.0, 23.9, 23.7, 14.1; ¹H NMR δ 7.20–7.35 (5H, m), 4.57 (1H, d, *J* = 7.5 Hz), 4.30 (2H, q, *J* = 7.2 Hz), 4.25–4.33 (1H, m), 4.09 (1H, *J* = 6.4, 8.4 Hz), 3.74 (1H, d, *J* = 6.7 Hz), 3.62 (1H, *J* = 6.4, 8.4 Hz), 1.54 (3H, s), 1.35–1.65 (10H, m), 1.32 (3H, t, *J* = 7.2 Hz); (a)²⁰₅₄₆ -20.0 (*c* = 1.0, CH₂Cl₂); MS (CI) *m*/*z* (relative intensity) 402 (M⁺, 100), 401 (20), 400 (16), 304 (24), 286 (17), 191 (13), 107 (17). Anal. Calcd for C₂₃H₃₁NO₅ (401.50): C, 68.80; H, 7.78; N, 3.49. Found: C, 68.77; H, 7.71; N, 3.61.

Ethyl (2*R*,3*R*,4*R*,5*S*)-4-acetyl-3-[(1*S*)-1,2-O-cyclohexylideneethyl]-5-(pyridin-3-yl)pyrrolidine-2-carboxylate (3g): ¹³C NMR δ 208.8, 171.9, 149.0, 148.5, 134.2, 133.8, 123.4, 109.6, 75.8, 67.6, 62.8, 62.7, 61.4, 57.9, 50.6, 36.1, 34.5, 31.6, 24.9, 23.8, 23.6, 14.1; ¹H NMR δ 8.55 (1H, s), 8.50 (1H, d, *J* = 3.9 Hz), 7.62 (1H, d, *J* = 8.0 Hz), 7.25 (1H, dd, *J* = 7.8, 4.8 Hz), 4.57 (1H, d, *J* = 7.6 Hz), 4.27-4.35 (1H, m), 4.27 (2H, q, *J* = 7.1 Hz), 4.09 (1H, *J* = 6.3, 8.4 Hz), 3.77 (1H, d, *J* = 7.0 Hz), 3.62 (1H, df, *J* = 4.0, 6.6 Hz), 1.67 (3H, s), 1.35-1.65 (10H, m), 1.31 (3H, t, *J* = 7.1 Hz); [a]²⁰₅₄₆ -26 (c = 1.0, CH₂Cl₂). Anal. Calcd for C₂₂H₃₀N₂O₅ (402.49): C, 65.65; H, 7.51; N, 6.96. Found: C, 65.39; H, 7.57; N, 6.78.

Ethyl (2*R*,3*R*,4*R*,5*S*)-4-acetyl-3-[(1*S*)-1-(benzyloxy)-2hydroxyethyl]-5-phenylpyrrolidine-2-carboxylate (3h): ¹³C NMR δ 209.9, 172.6, 138.3, 138.0, 128.4, 128.2, 127.9, 127.8, 127.7, 126.9, 78.0, 72.6, 65.5, 62.5, 62.2, 61.2, 57.8, 48.9, 31.2, 14.1; ¹H NMR δ 7.15–7.40 (10H, m), 4.70, 4.59 (2H, *J* = 11.6 Hz), 4.44 (1H, d, J = 8.6 Hz), 4.22 (2H, q, J = 7.1 Hz), 3.76 (1H, d, J = 8.4 Hz), 3.71–3.76 (1H, m), 3.67 (1H, dd, J =6.2, 8.6 Hz), 3.60–3.63 (2H, m), 2.93 (1H, dt, J = 4.1, 8.4 Hz), 2.85 (2H, b), 1.26 (3H, t, J = 7.1 Hz); $[\alpha]^{20}_{546}$ –36.0 (c = 1.0, CH₂Cl₂); MS (CI) m/z (relative intensity) 412 (M⁺, 100), 411 (21), 368 (20), 232 (31), 230 (26), 192 (20), 191 (33), 117 (22). Anal. Calcd for C₂₄H₂₉NO₅ (411.50): C, 70.05; H, 7.10; N, 3.40. Found: C, 70.09; H, 7.41; N, 3.48.

Ethyl (2R,3R,4R,5S)-4-acetyl-3-[(1S)-1-(dibenzylamino)ethyl]-5-phenylpyrrolidine-2-carboxylate (3i): 13 C NMR δ 209.2, 173.4, 139.5, 138.2, 128.5, 128.3, 128.2, 127.6, 126.8, 126.6, 65.2, 63.4, 61.4, 61.0, 55.0, 53.4, 49.8, 30.9, 13.8, 10.8; 14 NMR δ 7.20–7.45 (15H, m), 4.24 (1H, d, J = 7.0 Hz), 4.23 (1H, d, J = 5.1 Hz), 4.00–4.15 (2H, m), 3.90, 3.35 (2H, J = 13.7 Hz), 3.05 (1H, dt, J = 2.4, 3.8 Hz), 2.97 (1H, dd, J = 3.0, 7.5 Hz), 2.60–2.72 (1H, m), 1.53 (3H, s), 1.16 (3H, t, J = 7.6 Hz), 1.12 (3H, d, J = 6.6 Hz); [α]²⁰₅₄₆ –49.5 (c = 1.0, CH₂Cl₂). Anal. Calcd for C₃₁H₃₆N₂O₃ (484.64): C, 76.83; H, 7.49; N, 5.78. Found: C, 76.63; H, 7.45; N, 5.92.

Ethyl (2*R*,3*R*,4*R*,5*S*)-4-acetyl-3-[(1*S*)-1-(dibenzylamino)ethyl]-5-(pyridin-3-yl)pyrrolidine-2-carboxylate (3j): ¹³C NMR δ 207.9, 172.7, 148.5, 148.1, 134.0, 139.1, 134.2, 128.2, 127.8, 126.5, 122.9, 63.3, 62.0, 60.7, 60.5, 54.9, 53.0, 49.1, 30.6, 13.5, 10.3; ¹H NMR δ 8.44 (1H, s), 8.42 (1H, d, J = 4.9 Hz), 7.60 (1H, d, J = 8.0 Hz), 7.15–7.40 (10H, m), 7.17–7.22 (1H, m), 4.21 (1H, d, J = 5.2 Hz), 4.20 (1H, d, J = 6.8 Hz), 4.02–4.16 (2H, m), 3.80, 3.36 (2H, J = 13.7 Hz), 3.07 (1H, dt, J = 4.1, 6.8 Hz), 2.98 (1H, dd, J = 4.1, 6.7 Hz), 2.64 (1H, q, J = 6.5 Hz), 1.58 (3H, s), 1.14 (3H, t, J = 7.1 Hz), 1.09 (3H, d, J = 6.6 Hz); [α]²⁰₅₄₆ –46.5 (c = 1.0, CH₂Cl₂). Anal. Calcd for C₃₀H₃₅N₃O₃ (485.63): C, 74.20; H, 7.26; N, 8.65. Found: C, 74.63; H, 6.95; N, 8.31.

Ethyl (2R,3R,4R,5S)-4-acetyl-3-[(1S)-1-(dibenzylamino)-2-phenylethyl]-5-phenylpyrrolidine-2-carboxylate (3k): ¹³C NMR δ 209.4, 173.7, 140.7, 139.4, 137.8, 129.0, 128.6, 128.6, 128.3, 128.2, 127.5, 126.9, 126.4, 126.1, 65.4, 62.8, 61.1, 61.0, 60.7, 53.8, 49.6, 34.6, 31.1, 13.9; ¹H NMR δ 6.95–7.35 (20H, m), 4.47 (1H, d, J = 4.8 Hz), 4.07–4.17 (2H, m), 3.93 (1H, d, J = 6.1 Hz), 3.92, 3.50 (2H, J = 13.7 Hz), 3.32 (2H, J = 4.8, 13.8 Hz), 3.19 (1H, dt, J = 4.6, 7.2 Hz), 3.00–3.10 (1H, m), 2.70 (1H, dd, J = 3.9, 7.2 Hz), 2.60 (2H, J = 4.8, 13.8 Hz), 1.21 (3H, t, J = 7.2 Hz), 1.16 (3H, s); $[\alpha]^{20}_{546} + 8.0$ (c = 1.0, CH₂Cl₂). Anal. Calcd for C₃₇H₄₀N₂O₃ (560.73): C, 79.25; H, 7.19; N, 5.00. Found: C, 79.50; H, 7.19; N, 5.04.

Ethyl (2R,3R,4R,5S)-4-acetyl-3-[(1S)-1-(dibenzylamino)-2-phenylethyl]-5-(pyridin-3-yl)pyrrolidine-2-carboxylate (3l): ¹³C NMR δ 208.8, 173.6, 149.0, 148.6, 133.8, 140.6, 139.1, 134.0, 128.9, 128.8, 128.7, 128.3, 127.0, 126.3, 123.4, 62.6, 62.5, 61.2, 60.7, 60.5, 53.9, 49.9, 34.6, 31.3, 13.9; ¹H NMR δ 8.47 (1H, s), 8.21 (1H, s), 7.52 (1H, d, J = 7.9 Hz), 7.20– 7.45 (15H, m), 7.20 (1H, d, J = 7.9 Hz), 4.61 (1H, d, J = 4.6Hz), 4.22 (2H, q, J = 7.2 Hz), 4.21 (1H, d, J = 5.2 Hz), 4.03, 3.57 (2H, J = 13.7 Hz), 3.43 (2H, J = 4.0, 14.0 Hz), 3.18 (1H, dt, J = 4.6, 7.2 Hz), 3.00–3.10 (1H, m), 2.70 (2H, J = 4.0, 14.0 Hz), 2.69 (1H, dd, J = 3.9, 7.2 Hz), 1.21 (3H, t, J = 7.2 Hz), 1.16 (3H, s); [α]²⁵₅₄₆ -29.5 (c = 1.0, CH₂Cl₂). Anal. Calcd for C₃₆H₃₉N₃O₃ (561.72): C, 76.98; H, 7.00; N, 7.48. Found: C, 76.98; H, 6.86; N, 7.19.

Ethyl (2R,3R,4R,5S)-4-acetyl-3-[(1S)-1-(dibenzylamino)-2-phenylethyl]-5-cyclohexylpyrrolidine-2-carboxylate (3m): 13 C NMR δ 211.3, 173.4, 140.7, 139.4, 129.0, 128.6, 128.2, 127.9, 126.8, 126.1, 68.4, 62.3, 61.0, 61.0, 57.3, 53.9, 51.2, 38.1, 35.0, 31.7, 31.2, 26.0, 25.5, 13.8; 1 H NMR δ 6.99–7.29 (15H, m), 4.59 (1H, d, J = 4.2 Hz), 4.00–4.17 (2H, m), 3.94 (2H, J = 13.7 Hz), 3.71 (1H, d, J = 4.1 Hz), 3.46 (2H, J = 13.7 Hz), 3.28 (2H, J = 4.8, 13.8 Hz), 3.06–3.12 (1H, m), 2.69–2.82 (2H, m), 2.59 (2H, J = 4.8, 13.8 Hz), 2.15–2.22 (1H, m), 1.78 (3H, s), 1.07 (3H, t, J = 7.1 Hz), 0.55–1.65 (10H, m); [α]²⁰₅₄₆ –4.5 (c = 1.0, CH₂Cl₂). Anal. Calcd for C₃₇H₄₆N₂O₃ (566.78): C, 78.41; H, 8.18; N, 4.94. Found: C, 78.32; H, 8.22; N, 4.92.

Diethyl (2*R*,3*R*,4*R*,5*S*)-3-[(4*S*)-2,2-dimethyl-1,3-dioxolan-4-yl]-5-phenylpyrrolidine-2,4-dicarboxylate (6): ¹³C NMR δ 172.9, 172.2, 138.1, 128.0, 127.3, 126.5, 109.0, 75.9, 67.8, 65.4, 62.9, 61.2, 60.2, 51.4, 50.9, 26.3, 24.9, 14.1, 13.4; ¹H NMR δ 7.20–7.31 (5H, m), 4.53 (1H, d, J = 7.5 Hz), 4.36, 4.24 (2H, q, J = 7.1 Hz), 4.15–4.21 (1H, m), 4.09 (1H, J = 6.5, 8.4 Hz), 3.79 (1H, d, J = 7.1 Hz), 3.60 (1H, J = 6.5, 8.4 Hz), 3.36 (1H, dd, J = 3.8, 7.5 Hz), 2.80 (1H, dt, J = 4.4, 7.8 Hz), 1.45, 1.36 (3H, s), 1.31, 0.75 (3H, t, J = 7.1 Hz); [α]²⁰₅₄₆ -37.0 (c = 1.0, CH₂Cl₂).

Preparation of β , γ -Unsaturated Carbonyl Compounds (8). To a solution of enone 1 or ester 4 (0.5 mmol) in CH₂Cl₂ (4 mL) was added DBU (91 mg, 0.6 mmol). The solution was stirred at room temperature until TLC showed completion of the reaction. Saturated NH₄Cl solution was added, and the mixture was extracted several times with CH₂Cl₂. The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. The products were separated by column chromatography (hexane/ethyl acetate, 8:2).

5,6-O-Isopropylidenehex-4-en-2-one (8a, major): 72%; colorless oil; ¹³C NMR δ 207.5, 151.1, 112.0, 85.8, 66.2, 40.5, 29.3, 25.2; ¹H NMR δ 4.42–4.43 (2H, m), 4.31 (1H, tt, J = 7.1, 1.5 Hz), 3.14 (2H, d, J = 7.1 Hz), 2.09 (3H, s), 1.38 (6H, s). **8a** (minor): 18%; colorless oil; ¹³C NMR δ 206.6, 152.6, 111.8, 86.9, 64.9, 41.8, 29.2, 25.2; ¹H NMR δ 4.83 (1H, tt, J = 7.9, 2.2 Hz), 4.46–4.47 (2H, m), 2.88 (2H, d, J = 7.9 Hz), 2.12 (3H, s), 1.41 (6H, s).

5,6-O-Cyclohexylidenehex-4-en-2-one (8b, major): 74%; colorless oil; ¹³C NMR δ 207.3, 150.9, 112.4, 85.6, 65.7, 40.4, 29.0, 34.5, 24.7, 23.5; ¹H NMR δ 4.40–4.41 (2H, m), 4.29 (1H, tt, J = 7.1, 1.5 Hz), 3.15 (2H, d, J = 7.1 Hz), 2.09 (3H, s), 1.35–1.63 (10H, m).

Ethyl 4,5-O-isopropylidenepent-3-enoate (8c, major): 64%; colorless oil; ¹³C NMR δ 172.3, 150.8, 111.8, 85.8, 66.1, 60.3, 30.8, 25.1, 14.1; ¹H NMR δ 4.41 (2H, d, J = 1.4 Hz), 4.31 (1H, tt, J = 7.0, 1.4 Hz), 4.06 (2H, q, J = 7.1 Hz), 3.05 (2H, d, J = 7.0 Hz), 1.37 (6H, s), 1.18 (3H, t, J = 7.1 Hz). 8c (minor): 24%; colorless oil; ¹³C NMR δ 171.7, 152.3, 111.5, 86.9, 64.7, 60.5, 32.3, 24.9, 14.0; ¹H NMR δ 4.77 (1H, tt, J = 7.0, 1.4 Hz), 4.06 (2H, q, J = 7.1 Hz), 2.76 (2H, d, J = 7.9 Hz), 1.37 (6H, s), 1.18 (3H, t, J = 7.1 Hz).

Preparation of the 5-Hydroxy-1,4-dicarbonyl Compounds (9). p-Toluenesulfonic acid (10 mg) was added to a solution of the corresponding compound 8 (0.25 mmol) in CH₃-OH (2 mL). After the solution was stirred at rt for 2 h, CH₂-Cl₂ (25 mL) was added, and the mixture was washed with an aqueous NaHCO₃ solution. The aqueous layer was extracted with CH₂Cl₂, and the combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. The products were purified by column chromatography (hexane/ ethyl acetate, 7:3). (Note: it was detected by TLC that compounds 9 were already formed to some extent after storing enol ethers 8 even in the refrigerator).

1-Hydroxyhexane-2,5-dione (9a): ¹³C NMR δ 208.7, 207.0, 68.0, 36.7, 31.6, 29.5; ¹H NMR δ 4.26 (2H, s), 3.61 (2H, t, J = 6.4 Hz), 2.56 (2H, t, J = 6.4 Hz), 2.13 (3H, s); NMR data identical to literature data.^{10a}

Methyl 5-hydroxy-4-oxopentanoate (9b): ¹³C NMR δ 208.2, 172.7, 68.0, 51.8, 32.6, 27.3; ¹H NMR δ 4.25 (2H, s), 3.61 (3H, s), 3.16 (1H, bs), 2.61 (4H, s); NMR data identical to literature data.^{10b}

Ethyl (2R,3R,4R,5S)-4-Acetyl-3-[(1S)-1,2-dihydroxyethyl]-5-phenylpyrrolidine-2-carboxylate (11). (a) From 3a or 3f. The pyrrolidine 3a or 3f (0.25 mmol) was dissolved in a mixture of THF (3 mL) and water (0.5 mL), treated with hydrochloric acid (37%, 0.3 mL), and stirred at rt for 1 h. The solution was basified with aqueous NH₃ solution and concentrated until THF was evaporated. The residue was extracted with CH_2Cl_2 , and the organic layer was dried (MgSO₄) and concentrated under reduced pressure. The remaining oil was purified by column chromatography (CHCl₃/CH₃OH, 9:1) to afford 11 (from 3a: 65 mg, 81%. From 3f: 59 mg, 73%).

(b) From 3h. Compound 3h (102 mg, 0.25 mmol) was dissolved in CH₂Cl₂ (1 mL) and cooled to -78 °C under argon. A solution of boron tribromide (200 mg, 0.8 mmol) in CH₂Cl₂ (0.5 mL) was slowly added, and the mixture was stirred for an additional 2 h. To decompose the excess of boron tribromide, 200 mg of ethanol was added at -78 °C. The reaction mixture was separated by column chromatography (CHCl₃/CH₃OH, 9:1) to afford 11 (32 mg, 40%): mp 101 °C; ¹H NMR δ 7.18–7.39 (5H, m), 4.49 (1H, d, J = 7.9 Hz), 4.22 (2H, q, J = 7.1 Hz), 3.76 (1H, d, J = 7.5 Hz), 3.72–3.82 (1H, m), 3.57–3.64 (2H, m), 3.42 (1H, dd, J = 3.6, 7.7 Hz), 2.72–2.81 (1H, m), 2.50 (3H, b), 1.51 (3H, s), 1.25 (3H, t, J = 7.1 Hz); [α]²⁰546 –47.3 (c = 1.0, CH₂Cl₂). Anal. Calcd for C₁₇H₂₃NO₅ (321.37): C, 63.54; H, 7.21; N, 4.96. Found: C, 63.17; H, 7.59; N, 4.86.

Ethyl (1R,3S,3aR,7S,7aR)-7-Hydroxy-4-methoxy-4-methyl-3-phenyloctahydropyrano[3,4-c]pyrrole-1-carboxylate (12). The pyrrolidine 3f (0.25 mmol, 100 mg) was dissolved in CH₃OH (4 mL), treated with p-toluenesulfonic acid (100 mg), and stirred at rt for 2 h. CH₂Cl₂ (25 mL) was added, and the mixture was washed with an aqueous NaHCO3 solution. The aqueous layer was extracted with CH₂Cl₂, and the combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. The products were separated by column chromatography (CHCl₃/CH₃OH, 9:1) to afford 11 (12 mg, 15%) and 12 (55 mg, 66%): ¹³C NMR δ 174.2, 143.7, 128.0, 127.4, 126.7, 99.0, 65.3, 65.1, 62.3, 61.2, 58.9, 50.4, 47.8, 42.3, 21.3, 14.3; ¹H NMR δ 7.11–7.21 (5H, m), 4.44 (1H, d, J= 7.3 Hz), 4.22 (2H, m), 4.01 (1H, d, J = 1.5 Hz), 3.88 (1H, d, J = 10.0 Hz), 3.51 (2H, d, J = 1.5 Hz), 2.60–2.77 (1H, m), 2.65 (2H, b), 2.58 (3H, s), 2.48-2.56 (1H, m), 1.27 (3H, s), 1.26 $(3H, t, J = 7.2 \text{ Hz}); [\alpha]^{20}_{546} - 39.4 (c = 1.0, CH_2Cl_2); MS (CI)$ m/z (relative intensity) 336 (M⁺, 100), 334 (11), 305 (14), 304 (66), 302 (11), 262 (51).

Acknowledgment. G. Galley thanks the Fonds der Chemischen Industrie for a scholarship (Promotionsstipendium). We are grateful to Dr. Amjad Ali, University of Texas at Austin, for refining the English manuscript.

JO9504528